Extensions 1→N→G→Q→1 with N=C42 and Q=D7

Direct product G=N×Q with N=C42 and Q=D7
dρLabelID
D7×C42112D7xC4^2224,66

Semidirect products G=N:Q with N=C42 and Q=D7
extensionφ:Q→Aut NdρLabelID
C421D7 = C42⋊D7φ: D7/C7C2 ⊆ Aut C42112C4^2:1D7224,67
C422D7 = C422D7φ: D7/C7C2 ⊆ Aut C42112C4^2:2D7224,71
C423D7 = Dic14⋊C4φ: D7/C7C2 ⊆ Aut C42562C4^2:3D7224,11
C424D7 = C4×D28φ: D7/C7C2 ⊆ Aut C42112C4^2:4D7224,68
C425D7 = C284D4φ: D7/C7C2 ⊆ Aut C42112C4^2:5D7224,69
C426D7 = C4.D28φ: D7/C7C2 ⊆ Aut C42112C4^2:6D7224,70

Non-split extensions G=N.Q with N=C42 and Q=D7
extensionφ:Q→Aut NdρLabelID
C42.1D7 = C42.D7φ: D7/C7C2 ⊆ Aut C42224C4^2.1D7224,9
C42.2D7 = C28⋊C8φ: D7/C7C2 ⊆ Aut C42224C4^2.2D7224,10
C42.3D7 = C4×Dic14φ: D7/C7C2 ⊆ Aut C42224C4^2.3D7224,63
C42.4D7 = C282Q8φ: D7/C7C2 ⊆ Aut C42224C4^2.4D7224,64
C42.5D7 = C28.6Q8φ: D7/C7C2 ⊆ Aut C42224C4^2.5D7224,65
C42.6D7 = C4×C7⋊C8central extension (φ=1)224C4^2.6D7224,8

׿
×
𝔽